

pplied geoscience for our changing Earth

Forecast Evaluation as Applied to Geomagnetic Activity Categories

Ellen Clarke and Alan Thomson

© NERC All rights reserved

ESWW10 Plenary Session 12

Outline

- The daily 1-3 day ahead geomagnetic forecast
 - WHAT we try to do and WHO we do it for
- Forecast verification against benchmark
 - Year by year comparisons (2000 to 2013)
 - Comparisons between individual forecasters
- Investigation of performance measures skill scores
 - Important for on-going automated evaluation
 - What is the most appropriate for this type of forecast?
- Future Plans
 - Further comparisons and feedback to forecasters
 - Revision of the service and user perspectives

What is the Geomagnetic Activity Forecast?

- Predictions are of global average geomagnetic activity levels
- Forecasts are issued every weekday before noon
 - Weekends are not included not a commercially funded service
- Predictions are for 1, 2 and 3 days (intervals) ahead
- Forecast intervals are 24 hours from noon to noon (UT)
 - More likely to capture storms in the local UK night time sector
- Use public domain space weather observations, models, alerts and forecasts
 - Tap into the specific expertise of various groups around the world
- There are four activity levels to choose from (based on Ap)
 - MAJOR STORM, MINOR-STORM, ACTIVE or QUIET-UNSETTLED

What is the Geomagnetic Activity Forecast?

- Predictions are of global average geomagnetic activity levels
- Forecasts are issued every weekday before noon
 - Weekends are not included not a commercially funded service

Predict	ACTIVITY CLASS	Daily Planetary Activity Level (Ap)	ad
_	QUIET – UNSETTLED	<=15	(1.17)
Forecas	ACTIVE	16-29	n (UI)
	MINOR STORM	30-49	e sector
Use pul	MAJOR STORM	>=50	nodels

alerts and forecasts

- Tap into the specific expertise of various groups around the world
- There are four activity levels to choose from (based on Ap)
 - MAJOR STORM, MINOR-STORM, ACTIVE or QUIET-UNSETTLED

The Daily Geomagnetic Activity Forecast

Who gets the Geomagnetic Activity Forecast?

Recipients of the daily forecast (over the years) include:

- Met Office (UK)
 - Part of the National Hazards Partnerships' Daily Hazard Assessment
 - Informing UK Cabinet Office Civil Contingencies Secretariat
- Power companies concerned about Geomagnetically Induced Currents
 - E.g. Scottish Power and National Grid
- Oil and Gas industry companies using directional drilling techniques
 - E.g. Halliburton Sperry Drilling and Baker Hughes
- Geophysical prospecting companies
- Organisations working on instrument calibrations
 - E.g. National Physical Laboratory and Bartington Instruments
- Geomagnetism colleagues and partners
 - Planning for field work or absolute observations at observatories

How can we verify the accuracy of our forecasts?

BRITISH GEOLOGICAL SURVEY: NATIONAL GEOMAGNETIC SERVICE GEOMAGNETIC ACTIVITY FORECAST FOR SPERRY DRILLING

Forecast Interval (GMT)

Forecast Global Activity Level

Noon 28-OCT-2003 to Noon 29-OCT-2003 Noon 29-OCT-2003 to Noon 30-OCT-2003 Noon 30-OCT-2003 to Noon 31-OCT-2003 ACTIVE MINOR-STORM MINOR-STORM

Simple Verification Statistic (% correct)

Simple Verification Statistic - % Correct by Year

= = =

Simple Verification Statistic - % Correct by Year

= = =

Simple Verification Statistic (% correct)

Simple Verification Statistic (% correct)

Forecast Verification using Skill Scores

• Binary Events - > Two-dimensional Contingency table (E.g. MAGNETIC STORM or NO MAGNETIC STORM)

2x2 continger	ncy table	Magneti Obse	Marginal	
		Yes	No	Total
Magnetic Storm	Yes	А	В	A + B
Forecast	No	С	D	C + D
Marginal Total		A + C	B + D	n (A+B+C+D)

- Many performance measures can be determined using the contingency table entries
- 3 properties we want out of a skill measure for Space Weather are:
 - 1. Equitability
 - 2. Discourages hedging
 - 3. Usefulness for relatively rare events

No single measure designed (so far) that is strong in all three

Forecast Verification using Skill Scores

2x2 continger	ncy table	Magneti Obse	Marginal Total	
		Yes		No
Magnetic Storm	Yes	А	В	A + B
Forecast	No	C	D	C + D
Marginal Total		A + C	B + D	n (A+B+C+D)

- Peirce Skill Score (PSS) also known as True Skill Statistic (TSS) PSS= (AD-BC)/(A+C)(B+D)
- Gilbert Skill Score (GSS) also known as Equitable Threat Score (ETS) GSS= (A-CH)/(A+B+C-CH) where CH (chance hit) = (A+B)(A+C)/n
- Heidke skill score (HSS)

HSS= (A+D-E)/(n-E)

where E (correct random forecast) = [(A+B)(A+C)+(B+D)(C+D)]/n

Forecasters and Skill Scores (Binary : STORM / NO STORM)

Coomog Fo	rocostors	Storm O	Marginal	
Geomag Forecasters		Yes	No	Total
Storm	Yes	63	74	137
Forecast	No	139	3349	3488
Marginal Total		202	3423	3625

Ponch	mark	Storm O	Marginal	
benchmark		Yes	No	Total
Storm	Yes	62	111	173
Forecast	No	140	3312	3452
Margina	al Total	202	3423	3625

 \rightarrow PSS=0.29

 \rightarrow PSS=0.27

→HSS=0.34

→HSS=0.29

→GSS=0.21

→GSS=0.17

Forecasters and Skill Scores (Binary : STORM / NO STORM)

	rocostors	Storm O	Marginal	
Geomag Fo	recasters	Yes	No	Total
Storm	Yes	63	74	137
Forecast	No	139	3349	3488
Margina	l Total	202	3423	3625

Ponch	mark	Storm O	Marginal	
Dench	IIIdi K	Yes	No	Total
Storm	Yes	62	111	173
Forecast	No	140	3312	3452
Marginal Total		202	3423	3625

Forecast Verification including BIAS

2x2 continger	ncy table	Magnet Obse	Marginal	
		Yes	No	Total
Magnetic Storm	Yes	А	В	A + B
Forecast	No	С	D	C + D
Marginal Total		A + C	B + D	n (A+B+C+D)

Bias score or frequency bias

```
BIAS=(A+B)/(A+C)
```

Geomag Forecasters		Storm O	Marginal	
		Yes	No	Total
Storm	Yes	63	74	137
Forecast	No	139	3349	3488
Marginal Total		202	3423	3625

Benchmark		Storm O	Marginal	
		Yes	No	Total
Storm	Yes	62	111	173
Forecast	No	140	3312	3452
Marginal Total		202	3423	3625

$$BIAS = 0.68$$

BIAS = 0.86

Individual Forecasters and BIAS

Individual Forecasters and BIAS

Individual Forecasters and BIAS

Ω

Multi-Category Equitable Skill Scores

k x k contingency table with elements A _{ij}		Forecast (F) Category (j)				Marginal Total
		1	2		k	
	1	A _{1,1}	A _{1,2}	A _{1,}	A _{1,k}	n (O ₁)
Observed (O)	2	A _{2,1}	A _{2,2}	A _{2,}	A _{2,k}	n (O ₂)
Category (i)		A,1	A,2	Α	А _{,k}	n (O_)
	k	A _{k,1}	A _{k,2}	A _{k,}	A _{k,k}	n (O _k)
Marginal Total		n (F ₁)	n (F ₂)	n (F)	n (F _k)	Ν

Gandin and Murphy (1992) devised a way of extending equitable skill scores to more than two categories. The general formula is

4 x 4 probability matrix (P) where p _{ij} = A _{ij} /N		Forecast (F) Category (j)				Climatological
		1	2	3	4	probability
	1	р _{1,1}	p _{1,2}	р _{1,3}	р _{1,4}	p (O 1)
Observed (O)	2	p _{2,1}	p _{2,2}	р _{2,3}	р _{2,4}	p (O ₂)
Category (i)	3	р _{3,1}	р _{3,2}	р _{з,з}	р _{з,4}	р (О ₃)
	4	p _{4,1}	p _{4,2}	р _{4,3}	р _{4,4}	р (О ₄)
Forecast probability		p (F ₁)	p (F ₂)	p (F ₃)	p (F ₄)	1

 $ESS = \sum_{k=1}^{k} \sum_{k=1}^{k}$ pijSij

s_{ij} are the elements of a reward-penalty matrix Known as the scoring matrix (S).

Scoring Matrix for Multi-Category Equitable Skill Scores

Gerrity (1992) extended this further and derived formulas for populating the S matrix for >3 categories.

4 x 4 probability	Forecast (F) Category (j)					
wnere p _{ij} = A _{ij} /N		1	2	3	4	
Observed (O) Category (i)	1	p _{1,1}	p _{1,2}	p _{1,3}	р _{1,4}	
	2	p _{2,1}	p _{2,2}	p _{2,3}	p _{2,4}	
	3	р _{3,1}	р _{3,2}	р _{3,3}	р _{3,4}	
	4	р _{4,1}	p _{4,2}	р _{4,3}	р _{4,4}	

$$D(n) = \frac{1 - \sum_{r=1}^{n} p(r)}{\sum_{r=1}^{n} p(r)}$$
$$R(n) = \frac{1}{D(n)}$$

Scoring Matrix for Multi-Category Equitable Skill Scores

Gerrity (1992) extended this further and derived formulas for populating the S matrix for >3 categories.

4 x 4 Scoring M	Forecast (F) Category (j)					
		1	2	3	4	
Observed (O) Category (i)	1	S 1,1	S 1,2	S 1,3	S _{1,4}	
	2	S _{2,1}	S 2,2	S _{2,3}	S _{2,4}	
	3	S 3,1	S 3,2	S 3,3	S _{3,4}	
	4	S 4,1	S 4,2	S 4,3	S 4,4	

$$D(n) = \frac{1 - \sum_{r=1}^{n} p(r)}{\sum_{r=1}^{n} p(r)}$$
$$R(n) = \frac{1}{D(n)}$$

$$s_{m,n} = \frac{1}{k-1} \left[\sum_{r=1}^{m-1} R(r) + \sum_{r=m}^{n-1} (-1) + \sum_{r=n}^{k-1} D(r) \right] ; \quad n = (1,...,k)$$
$$s_{n,n} = \frac{1}{k-1} \left[\sum_{r=1}^{n-1} R(r) + \sum_{r=n}^{k-1} D(r) \right] ; \quad 1 \le m < k, \quad m < n \le k$$

Scoring Matrix for Multi-Category Equitable Skill Scores

4 x 4 contingency matrix		Forecast Category				Marginal	4 x 4 Probability		Forecast Category				Climatological
		Q-U	ACTIVE	MINOR	MAJOR	TOLAT	matrix (P)		Q-U	ACTIVE	MINOR	MAJOR	probability
Observed Category	Q-U	3604	422	96	31	4153	Observed Category	Q-U	0.7115	0.0833	0.0190	0.0061	0.8199
	ACTIVE	414	169	46	9	638		ACTIVE	0.0817	0.0334	0.0091	0.0018	0.1260
	MINOR	96	55	22	9	182		MINOR	0.0190	0.0109	0.0043	0.0018	0.0359
	MAJOR	51	24	11	6	92		MAJOR	0.0101	0.0047	0.0022	0.0012	0.0182
Margina	l Total	4165	670	175	55	5065	Forecast probability		0.8223	0.1323	0.0346	0.0109	1.0000

4 x 4 reward-penalty or scoring matrix (S) as per Gerrity (1992)		Forecast Category						
		Q-U	ACTIVE	MINOR	MAJOR			
Observed Category	Q-U	0.0984	-0.3081	-0.6605	-1.0000			
	ACTIVE	-0.3081	1.5431	1.1907	0.8512			
	MINOR	-0.6605	1.1907	7.3525	7.0130			
	MAJOR	-1.0000	0.8512	7.0130	25.3645			

© NERC All rights reserved

ESWW10 Plenary Session 12

Correlation of Annual Mean A_p (AMV) and GSS

© NERC All rights reserved

ESWW10 Plenary Session 12

Correlation of Annual Mean A_p (AMV) and GSS

= = =

Summary and Future Plans

- Analysed the performance of 1-3 day ahead forecasts, 2000 to 2013
- Suitable performance measures for on-going verification have been found
- Measures of both skill and bias are required to fully evaluate performance
- Results show an overall bias indicating tendency to under-forecast storms
- In most cases forecasters have higher skill scores for predicting storms than a simple forecast model of persistence and recurrence

Plans

- Adapt the forecast to predict maximum activity levels at any point in the day, as well as the current daily average
- Alter the categories to match the NOAA/SWPC G scale
- Devise suitable means of providing (motivatory) feedback to forecasters
- Obtain feedback from users and if required adjust verification measures
- Measure forecast performance against other BGS models (E.g. NeuralNet)
- Investigate the possible use of Extreme Dependency Scores
- Include error bars/confidence limits on the skill and bias scores

Acknowledgement: This work was partly funded under the EURISGIC consortium project, having received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 260330 ESWW10 Plenary Session 12