Towards the study of the Solar wind Effects on the Magnetosphere using Fully Kinetic Simulations

Jorge AMAYA¹, Jan DECA¹, Stefano Markidis², Andrei DIVIN³, Bertrand Lembège⁴, Giovanni LAPENTA¹

¹CPA, KULeuven, Belgium ²KTH Royal Institute of Technology, Sweden ³Institutet för rymdfysik, Uppsala Universitet, Sweden ⁴LATMOS, CNRS, France

EU FP7 projects

- SWIFF: Space Weather Integrated Forecasting Framework (n° 263340)
- eHeroes: Environment for Human Exploration and RObotic Experimentation in Space (n° 284461)
- DEEP: Dynamical Exascale Entry Platform (n° 287530)

Motivation: Space Weather

- Complex plasma physics
- From fluid to kinetic effects
- From electron to planetary scales
- Highly coupled phenomena

KU LEUVEN

Effects on human and robotic space exploration

Different time and space scales

Jorge AMAYA - ESWW10 - November 19, 2013

mardi 19 novembre 13

KU LEUVEN

Numerical methods

Fully kinetic

[1] S. Baraka and L. Ben-Jaffel, Ann. Geophys., 29, 2011

$$m_i/m_e = 16, \ v_{th,e}/c = 0.1, \ v_{th,i}/c = 0.025$$

Jorge AMAYA - ESWW10 - November 19, 2013

PiC simulations at ion-scales

[1] M. Matsumoto et al., Plasma and Fusion Research, 8, 2013

- Adaptative mesh refinemet.
- Ion-scale simulation: applications to spacecraft shielding and magnetic sails

Global 3D PiC

[1] Cai et al., Earth Planets Space, 53, 2001

Global magnetospheric 3D topology

D. CAI et al .: THREE-DIMENSIONAL MAGNETIC FIELD TOPOLOGY

 $215 \times 95 \times 95$ $m_i/m_e = 16$ $v_{sw}/c = 0.5$ $v_{th,e}/c = 0.2$ $v_{th,i}/c = 0.05$

Jorge AMAYA - ESWW10 - November 19, 2013

KULEUVEN Hybrid codes: Mercury magnetosphere

N. Omidi et al. | Advances in Space Research 38 (2006) 632-638

Fig. 1. Density (normalized to solar wind density) as a function of X and Y during (a) northward and (b) southward IMF.

Jorge AMAYA - ESWW10 - November 19, 2013

Hybrid-Vlasov codes

- Solving above ion scales.
- Capture of wave propagation in the foreshock and the magnetosheat.
- Resolution in spatial (2D) and velocity (3D) spaces.

$$\Delta x = 0.13 R_E$$
$$\Delta v = 20 km/s$$

Tha Particle-in-Cell method

Jorge AMAYA - ESWW10 - November 19, 2013

mardi 19 novembre 13

KU LEUVEN

Particles:

Fields:

Implicit equations

$$\begin{split} \mathbf{x}_{p}^{n+1} &= \mathbf{x}_{p}^{n} + \mathbf{v}_{p}^{n+1/2} \Delta t, \\ \mathbf{v}_{p}^{n+1} &= \mathbf{v}_{p}^{n} + \frac{q_{s} \Delta t}{m_{s}} \left(\mathbf{E}_{p}^{n+\theta} (\mathbf{x}_{p}^{n+1/2}) + \mathbf{v}_{p}^{n+1/2} \times \mathbf{B}_{p}^{n} (\mathbf{x}_{p}^{n+1/2}) \right) \\ & \mathbf{B}_{g}^{n+1} - \mathbf{B}_{g}^{n} &= -\Delta t \nabla \times \mathbf{E}_{g}^{n+\theta}, \\ \mathbf{E}_{g}^{n+1} - \mathbf{E}_{g}^{n} &= \frac{\Delta t}{\mu_{0} \epsilon_{0}} \left(\nabla \times \mathbf{B}_{g}^{n+\theta} - \mu_{0} \mathbf{J}_{g}^{n+\frac{1}{2}} \right), \\ & \epsilon_{0} \nabla \cdot \mathbf{E}_{g}^{n+\theta} = \rho_{g}^{n+\theta}, \\ & \nabla \cdot \mathbf{B}_{g}^{n+1} = 0. \end{split}$$

Stability condition:

$$v_{\mathrm{th},e}\Delta t/\Delta x < 1.$$

Jorge AMAYA - ESWW10 - November 19, 2013

- Implicit methods allow a wider range of time and space scales
- Highly scalable: improves with technology which makes it perfect for ExaScale systems
- Simple enough to port to new architectures

KU LEUVEN Disadvantages of the PiC method

- Particle noise: requires higher resolution.
- Boundary conditions: requires improved numerical methods.
- CPU cost: requires to work on new architectures and better algorithms.
- Problem size: coupled and multi-domain algorithms are being developed.

- Simulation parametters closer to the actual physics.
- 3 types of simulations:
 - A. 2D Noon-Midnight meridian plane
 - B. 2D Equatorial plane
 - C. 3D

Reconnection

Jorge AMAYA - ESWW10 - November 19, 2013

Pressure and magnetic field lines

 B_z and velosity vectors

Reconnection

Jorge AMAYA - ESWW10 - November 19, 2013

Jorge AMAYA - ESWW10 - November 19, 2013

Jorge AMAYA - ESWW10 - November 19, 2013

Jorge AMAYA - ESWW10 - November 19, 2013

Solar wind

 $L_x = 64.768 d_i$ $L_y = 36.432d_i$ $N = 1024 \times 576 = 589824$ $\Delta x = \Delta y = 0.06325d_i$ $V_{sw}/c = 0.015$ $V_{th,e}/c = 0.05$ $V_{th,i}/c = 7.4 \times 10^{-3}$ $m_i / me = 250$ $M_A = 5$

Jorge AMAYA - ESWW10 - November 19, 2013

$$L_{x} = 64.768d_{i}$$

$$L_{y} = 36.432d_{i}$$

$$N = 1024 \times 576 = 589824$$

$$\Delta x = \Delta y = 0.06325d_{i}$$

$$V_{sw}/c = 0.015$$

$$V_{th,e}/c = 0.05$$

$$V_{th,i}/c = 7.4 \times 10^{-3}$$

$$m_{i}/me = 250$$

$$M_{A} = 5$$

Jorge AMAYA - ESWW10 - November 19, 2013

B. Equatorial plane

Diffusion effects at the boundary layer

[1] T. D. Phan and G. Paschmann, J. Geophys. Res., 101, 7801, (1996).

Jorge AMAYA - ESWW10 - November 19, 2013

mardi 19 novembre 13

KU LEUVEN

B. Equatorial plane

Diffusion effects at the boundary layer

[1] T. D. Phan and G. Paschmann, J. Geophys. Res., 101, 7801, (1996).

Jorge AMAYA - ESWW10 - November 19, 2013

B. Equatorial plane

B. Equatorial plane

B. Equatorial plane: density

Simulation initialization 15 000 cycles,7 hours, 1024 processors, 1.7 Mcells, 88.5 Mparticles

Jorge AMAYA - ESWW10 - November 19, 2013

mardi 19 novembre 13

KU LEUVEN

B. Equatorial plane: density

Simulation initialization 15 000 cycles,7 hours, 1024 processors, 1.7 Mcells, 88.5 Mparticles

$\Delta x = \Delta y = 0.04d_i$
$V_{sw}/c = 0.003$
$V_{th,e}/c = 3.7 \times 10^{-3}$
$V_{th,i}/c = 2.35 \times 10^{-4}$
$m_i/me = 250$
$M_A = 5$

Jorge AMAYA - ESWW10 - November 19, 2013

KU LEUVEN Comparison against an hybrid code

[1] J. Paral and R. Rankin, Nature Communications, 4 - 1645, April, 2013

Jorge AMAYA - ESWW10 - November 19, 2013

B. Across the shock

• 4 zones:

- Interplanetary plasma
- Magnetosheat
- Diffusion zone
- Magnetosphere
- Top: ion density
- Bottom: ion density and magnitude of the magnetic field

B. Dusk density profiles

- Density variation across the magnetosheat
- Sharp density drop across the magnetopause

KU LEUVEN

Instabilities in the plasma flow at the magnetopause

C. Future work

- Higher resolution
- Bigger planet
- Fully implicit

- Computations with up to 100 000 CPU cores
- Improvement of boundary conditions
- 3D system

- PiC methods are very sensitive to the thermal velocities imposed.
- Global simulations with electron-scale resolutions are yet computationally expensive.
- Boundary conditions are a major issue.
- We are pushing the code to the current computational limits.
- However we are currently performing simulations with parametters very close to those measured in-situ.

Towards the study of the Solar wind Effects on the Magnetosphere using Fully Kinetic Simulations

Jorge AMAYA¹, Jan DECA¹, Stefano Markidis², Andrei DIVIN³, Bertrand Lembège⁴, Giovanni LAPENTA¹

¹CPA, KULeuven, Belgium ²KTH Royal Institute of Technology, Sweden ³Institutet för rymdfysik, Uppsala Universitet, Sweden ⁴LATMOS, CNRS, France

The iPiC3D code

Jorge AMAYA - ESWW10 - November 19, 2013

KU LEUVEN

Field to particle interpolation

$$\mathbf{E}_p = \sum_g \mathbf{E}_g W(\mathbf{x}_g - \mathbf{x}_p),$$

$$\mathbf{B}_p = \sum_g \mathbf{B}_g W(\mathbf{x}_g - \mathbf{x}_g).$$

Jorge AMAYA - ESWW10 - November 19, 2013

KU LEUVEN

Implicit particle transport

$$\begin{split} \mathbf{x}_{p}^{n+1} &= \mathbf{x}_{p}^{n} + \mathbf{v}_{p}^{n+1/2} \Delta t, \\ \mathbf{v}_{p}^{n+1} &= \mathbf{v}_{p}^{n} + \frac{q_{s} \Delta t}{m_{s}} \left(\mathbf{E}_{p}^{n+\theta} (\mathbf{x}_{p}^{n+1/2}) + \mathbf{v}_{p}^{n+1/2} \times \mathbf{B}_{p}^{n} (\mathbf{x}_{p}^{n+1/2}) \right) \\ &\qquad \mathbf{v}_{p}^{n+1/2} = \widehat{\mathbf{v}}_{p} + \beta_{s} \widehat{\mathbf{E}}_{p}^{n+\theta} (\mathbf{x}_{p}^{n+1/2}) \\ &\qquad \widehat{\mathbf{v}}_{p} = \mathbf{\alpha}_{p}^{n} \cdot \mathbf{v}_{p}^{n}, \\ &\qquad \beta_{s} = q_{p} \Delta t / 2m_{p} \\ &\qquad \widehat{\mathbf{E}}_{p}^{n+\theta} = \mathbf{\alpha}_{p}^{n} \cdot \mathbf{E}_{p}^{n+\theta}, \qquad \beta_{s} = q_{p} \Delta t / 2m_{p} \\ &\qquad \qquad \downarrow \\ &\qquad \mathbf{\alpha}_{p}^{n} = \frac{1}{1 + (\beta_{s} B_{p}^{n})^{2}} \left(\mathbf{I} - \beta_{s} \mathbf{I} \times \mathbf{B}_{p}^{n} + \beta_{s}^{2} \mathbf{B}_{p}^{n} \mathbf{B}_{p}^{n} \right), \end{split}$$

Jorge AMAYA - ESWW10 - November 19, 2013

$$\begin{split} \mathbf{B}_{g}^{n+1} - \mathbf{B}_{g}^{n} &= -\Delta t \nabla \times \mathbf{E}_{g}^{n+\theta}, \\ \mathbf{E}_{g}^{n+1} - \mathbf{E}_{g}^{n} &= \frac{\Delta t}{\mu_{0}\epsilon_{0}} \left(\nabla \times \mathbf{B}_{g}^{n+\theta} - \mu_{0} \mathbf{J}_{g}^{n+\frac{1}{2}} \right), \\ \epsilon_{0} \nabla \cdot \mathbf{E}_{g}^{n+\theta} &= \rho_{g}^{n+\theta} \\ \nabla \cdot \mathbf{B}_{g}^{n+1} &= 0. \end{split}$$

Second order Maxwell

$$\mathbf{E}^{n+\theta} - (c\theta\Delta t)^2 \nabla^2 \mathbf{E}^{n+\theta} = \mathbf{E}^n + c^2 \theta \Delta t \Big(\nabla \times \mathbf{B}^n - \frac{\theta \Delta t}{\epsilon_0} \nabla \rho^{n+\theta} - \mu_0 \mathbf{J}^{n+1/2} \Big)$$

Taylor series expansion of the shape function:

$$S(\mathbf{x} - \mathbf{x}^{n+\theta}) = S(\mathbf{x} - \mathbf{x}^n) - (\theta \Delta t) \mathbf{v}^{n+\theta} \cdot \nabla S(\mathbf{x} - \mathbf{x}^n) + \cdots$$

Applying to the moments gives a linear interpolation:

$$\mathbf{J}^{n+1/2} \approx \mathbf{\widehat{J}}^n + \frac{\boldsymbol{\mu}^n}{\theta \Delta t} \cdot \mathbf{E}^{n+\theta},$$
$$\rho^{n+\theta} \approx \rho^n - \theta \Delta t \nabla \cdot \mathbf{J}^{n+1/2}$$

 $\text{where} \quad \begin{cases} \widehat{\mathbf{J}}^{n}(\mathbf{x}) \coloneqq \sum_{p} q_{p} \widehat{\mathbf{v}}_{p}^{n} S(\mathbf{x} - \mathbf{x}_{p}^{n}) - \frac{\Delta t}{2} \nabla \cdot \sum_{p} q_{p} \widehat{\mathbf{v}}_{p}^{n} \widehat{\mathbf{v}}_{p}^{n} S(\mathbf{x} - \mathbf{x}_{p}^{n}), \\ \widehat{\rho}^{n}(\mathbf{x}) \coloneqq \sum_{p} q_{p} S(\mathbf{x} - \mathbf{x}_{p}^{n}) - \theta \Delta t \nabla \cdot \widehat{\mathbf{J}}^{n}(\mathbf{x}). \\ \mu^{n} = \sum_{s} \frac{q_{s} \rho_{s}^{n}}{m_{s}} \frac{(\mathbf{I} - \beta_{s} \mathbf{I} \times \mathbf{B}^{n} + \beta_{s}^{2} \mathbf{B}^{n} \mathbf{B}^{n})}{1 + (\beta_{s} B^{n})^{2}}. \end{cases}$

KULEUVEN Final form for the E field equation

$$(c\theta\Delta t)^{2} \left[-\nabla^{2} \mathbf{E}^{n+\theta} - \nabla\nabla \cdot \left(\boldsymbol{\mu}^{n} \cdot \mathbf{E}^{n+\theta}\right) \right] + \boldsymbol{\epsilon}^{n} \cdot \mathbf{E}^{n+\theta} \\ = \mathbf{E}^{n} + (c\theta\Delta t) \left(\nabla \times \mathbf{B}^{n} - \mu_{0} \mathbf{\hat{J}}^{n} \right) - \frac{\left(c\theta\Delta t\right)^{2}}{\epsilon_{0}} \nabla \hat{\rho}^{n},$$

 $\boldsymbol{\epsilon}^n = \mathbf{I} + \boldsymbol{\mu}^n$

Stability condition:

 $v_{\mathrm{th},e}\Delta t/\Delta x < 1.$

Jorge AMAYA - ESWW10 - November 19, 2013