NOAA/NCEI Selected Results From GOES-16 Solar and Galactic Cosmic Ray Sensor (SGPS) Calibration and Anomaly Resolution

HARMONISATION OF SEP DATA CALIBRATIONS ESWW18 Topical Discussion Meeting November 7, 2018

B. T. Kress, J. V. Rodriguez, and A. Boudouridis NOAA National Centers for Environmental Information

Introduction/Outline

- SGPS GOES-16 Level 1b data publically available (Level 2 forthcoming): https://www.ngdc.noaa.gov/stp/satellite/goes-r.html
- Selected results from GOES-16 SGPS calibration activities presented herein (mainly Sept. 2017 SEP events, but also including analysis of GCR backgrounds)
 - Overview (Sept. 2017 SEP events)
 - Temperature Dependence and Correction Scheme
 - Source of backgrounds (GCRs)
 - Geomagnetic Cutoffs During Sept. 2017 SEP events

GOES-R Series Space Environment In-Situ Suite (SEISS) Solar and Galactic Cosmic Ray Sensor (SGPS)

Solar and Galactic Proton Sensor (SGPS)

- 2 Units, one looking East and one West
- 3 solid state telescopes on each unit
- 1 MeV-500 MeV protons in 13 differential channels, plus >500 MeV integral channel
- 4 MeV-500 MeV alphas in 12 energy bands (not processed)

Proton energy channels by telescope (13 differential and 1 integral)		
Telescope 1	Telescope 2	Telescope 3
P1 (1.0-1.9 MeV)	P6 (25-40 MeV)	P8A (83-99 MeV)
P2A. (1.9-2.3 MeV)	P7 (40-80 MeV)	P8B (99-118 MeV)
P2B (2.3-3.4 MeV)		P8C (118-150 MeV)
P3 (3.4-6.5 MeV)		P9 (150-275 MeV)
P4 (6.5-12 MeV)		P10 (275-500 MeV)
P5 (12-25 MeV)		P11 (>500 MeV)

P/N SEISS-MA-8000 S/N 101 8/23/12

SEISS designed, built, tested and calibrated by Assurance Technology Corporation

September 2017 SEP Events

- Temperature Dependence in SGPS-X T1 and T3 Addressed with correction algorithm downstream of Level 1b processing.
- Reported GCR fluxes too high

Selected Results From GOES-16 SGPS Calibration Activities

TEMPERATURE DEPENDENCE AND CORRECTION SCHEME

SGPS-X (West) Temperature Dependence

22 day averages of counts/sec in 1 deg. temperature bins between -20° and +30° C.

Here, P9 and P10 are shown as examples. There is also significant temperature dependence in response of P11, P1-P3, and P5 channels.

Temperature Correction Scheme

A rectangular function with temperature dependent boundaries is used to model the energy channel response function, and a power law is used to model the ambient spectrum

The total counts/sec. in the channel is the convolution of the channel response function and the ambient spectrum

$$C = \int_{E_L}^{E_U} G_0 j_0 E^{-\gamma} dE = G_0 j_0 \frac{(E_U^{1-\gamma} - E_L^{1-\gamma})}{1-\gamma}$$

A temperature and spectrum dependent correction is used to determine the counts expected in the fixed/calibrated channel (at 25°C), given counts from temp. dep. chan.

$$C_{corrected} = X(\gamma, T) * C_{measured}$$
,

where
$$X(\gamma, T) = \frac{G_0(T=25^oC)[E_U^{1-\gamma}(T=25^oC)-E_L^{1-\gamma}(T=25^oC)]}{G_0(T)[E(T)_U^{1-\gamma}-E(T)_L^{1-\gamma}]}$$

To Get Low Temp. E_L , E_U and G_0

 Obtain spectral index γ_i from fit to SGPS+X T3 channels (P8A-P10) (SGPS+X does not exhibit temperature dependence.) This is done for many (*i=1-N*) 5m averaged intervals from the Sept. 2017 SEP events.

Minimize the function

$$f(E_L, E_U, G_0) = \sum_{i=1}^{N} \left\{ \log \left(G_0 j_{0,i} \frac{(E_U^{1-\gamma_i} - E_L^{1-\gamma_i})}{1-\gamma_i} \right) - \log C_i \right\}^2$$
Measured counts

$$In \text{ channel}$$

with respect to E_L , E_U and G_0 using many spectra.

SGPS Temperature Correction

SGPS-X T3

SGPS-X T3 5 minute averaged counts per second during Sept. 2017 SEP event, showing uncorrected c/s in top panel and temperature corrected c/s in bottom panel.

Selected Results From GOES-16 SGPS Calibration Activities

SGPS BACKGROUNDS

High GCR/background Rates

GOES-16 and -17 SGPS 1-day averaged quiet-time background/GCR measurments and standard GCR models. Observed fluxes are well above GCR models and have negative spectral exponent, while GCR models have a positive spectral exponent in the SGPS energy range.

SGPS GEANT Simulated Response Functions

NOAA National (

GOES-16 SGPS Backgrounds

Observed vs. Modeled GCR Backgrounds

- Source of SGPS backgrounds is GCR counts.
- Reported GCR fluxes are significantly higher than accepted empirical models.
- High GCR fluxes are due to high energy tail portion of response function, not part of calibrated channel.
- Differential channels calibrated for observing SEP events; P11 (>500 MeV integral chan.) measures GCRs.

Selected Results From GOES-16 SGPS Calibration Activities

GEOMAGNETIC CUTOFFS DURING SEPTEMBER 2017 SEP EVENT

GOES-13 EPS

Summary

- Two SGPS sensor units mounted on each GOES-R series spacecraft
- GOES-16 SEISS SGPS Level 1b (1 sec.) provisional quality data released on July 11, 2018.
- Instrument and Level 1b processing anomalies are being worked – Corrected Level 2 data (1- and 5-minute averages) are forthcoming.