SPoCA:

Software for extraction, characterization, and tracking of Active Regions and Coronal Holes in EUV images

C. Verbeeck, V. Delouille, B. Mampaey, R. De Visscher (*ROB*)

SIDC seminar Royal Observatory of Belgium May 3, 2013

Outline

- **1.** Goals and motivation
- 2. Intro to SPoCA: segmentation of coronal EUV images
- **3. Comparing SPoCA to other algorithms**
- 4. SPoCA analysis of total AR/QS/CH EIT 1997-2011
- 5. SPoCA AR/CH results EUVI A & B
- 6. SPoCA AR results SWAP
- 7. SPoCA CH results AIA
- 8. Applications

1. Goals and motivation

- SPoCA is intended to enable large scale science studies of AR/QS/CH properties, such as:
 - In-depth study of a particular AR/CH region over its lifetime
 - Statistical study of individual AR/CH regions over solar cycle time scales (e.g., butterfly diagram)
 Total AR/QS/CH statistics over solar cycle time scales
- Automated detection scheme: needed in view of amount of images to be analyzed
- Fixed algorithm: ensures coherent and reproducible results

2. Intro to SPoCA: segmentation of coronal EUV images

- For every pixel *j*, we consider the vector (*x_j*¹⁷¹, *x_j*¹⁹⁵) of pixel values in both channels.
- Using fuzzy clustering techniques, we determine natural clusters (classes) in pixel value vector space and assign membership value u_{ij} of pixel j to every class i.
- To obtain a segmented image, we need to take a decision: we attribute pixel *j* to class *i* for which membership u_{ij} is largest.

EIT, September 12, 2001

Classical versus fuzzy clustering

Classical clustering

- Attribute pixel *j* to a unique class in {AR, CH, QS}
 s pixel *j* belongs to class AR
- Overlap between classes not possible
- Difficult to introduce expert knowledge
- More often converges to local minimum

Fuzzy clustering

- Attribute membership of pixel *j* to every class in {AR, CH, QS}
 § pixel *j* belongs 80% to AR, 15% to QS, 5% to CH
- Overlap between classes possible: fuzzy boundary AR/QS/CH
- Possible to introduce expert knowledge (for fusion of membership maps)
- More often converges to global minimum

Fuzzy clustering algorithms

- C $B = (b_1, \dots, b_C)$ x_j U[i, j] $d^2(x_j, b_i)$ N
- number of classes
- $B = (b_1, \dots, b_C)$: vector of centers
 - : descriptor of pixel j
 - : membership of pixel j to class i
 - : $||x_j b_i||^2$ (euclidean distance, to the square)
 - : Number of pixels in the data set considered

Possibilistic C-Means: minimize the function

$$J_{PCA}(B, U, X) = \sum_{i=1}^{C} \left(\sum_{j=1}^{N} u_{ij}^{m} d^{2}(x_{j}, b_{i}) + \eta_{i} \sum_{j=1}^{N} (1 - u_{ij})^{m} \right)$$

Parameter *m* represents the fuzziness of the clustering, typically *m=2* First term minimizes fuzzy sum of distances per class
 η_i is a regularization term better noise behavior

Problem: In case of outliers (cosmic rays, proton storm, flare), AR class can contain just outlier pixels instead of AR pixels

Fuzzy clustering algorithms

Spatially Constrained Possibilistic C-Means Algorithm (SPoCA)

Idea: Add spatial term to impose similar classification for neighboring pixels reduced sensitivity to outliers
Neighborhood

 N_i

$$\beta_k = \begin{cases} 1 & \text{if } k = j \\ \frac{1}{\operatorname{Card}(N_j) - 1} & \text{otherwise} \end{cases}$$

$$J_{\rm SPoCA}(B, U, X) = \sum_{i=1}^{C} \left(\sum_{j=1}^{N} u_{ij}^{m} \sum_{k \in \mathcal{N}_j} \beta_k d^2(x_k, b_i) + \eta_i \sum_{j=1}^{N} (1 - u_{ij})^m \right)$$

Limb brightening hinders segmentation

April 30, 2010, SWAP 174 Å

Solution: limb brightening correction

April 30, 2010, SWAP 174 Å

Detection and tracking of individual AR and CH regions

- Region growing technique to find connected components inside AR segmentation class
- Set lower size limit for AR to distinguish them from Bright Points: 1500 square arcseconds

Collecting bright patches into ARs

- Segmentation can yield several connected components (bright patches) which correspond to one AR
- Apply circular dilation to AR map
- The resulting connected components are considered to be ARs

Tracking of individual Active Regions

20030512.010014 : 171

- The ARs detected after dilation are followed over time
- Associate AR1 at time t₁ and AR2 at time t₂ if AR1 and AR2 overlap (every 15 minutes)
- Detect emerging ARs and assign new ID
- Keep track of splitting and merging ARs
- Save tracking results every 4 hours

Segmentation of AIA images

April 29, 2010, AIA 193 Å

April 29, 2010, AIA 171 Å

Active Region and Coronal Hole statistics

- Several parameters are calculated: for every AR/CH region: position, size, pixel intensity statistics 5 for the entire AR/QS/CH classes: size, pixel intensity statistics
- This allows statistical surveys of AR/QS/CH properties:
 - Throughout the solar cycle
 - Ø Within the lifetime of a specific region of interest

Region Statistics

Barycenter : NumberPixels : MinIntensity : MaxIntensity : Mean: Standard Deviation : 1286.050 Skewness : Kurtosis : TotalIntensity : Area Raw : 33680.616 Mm² Area At Disk Center : 55882.873 Mm²

(3121, 2622)175353 322 DN/s 9696 DN/s 1834.809 DN/s 0.005 -3.000 3.217 e+8 DN/s

3. Comparing SPoCA to other algorithms

Verbeeck et al., Sol.Phys. 2011

NOAA AR 10365 contours: SMART magnetic AR (in black, 10365 in red), ASAP sunspots (black crosses), STARA sunspots (penumbrae: orange, umbrae: magenta), SPoCA coronal AR (dashed blue).

3. Comparing SPoCA to other algorithms

4. SPoCA analysis of AR/QS/CH EIT 1997-2011

Dataset:

- 1k x 1k EIT image pairs (171 & 195 Å)
- Time range: March 1997-August 2011
- Cadence: 6 hours

Submitted to A&A, 2013

SPoCA AR/QS/CH segmentation:

- Input: square root; 4 classes: CH = {1}, QS={2,3}, AR = {4}
- Initial SPoCA run on subset: 1 image pair per month (112 pairs)
- Problem: AR not well detected during solar min: too little AR pixels
- Solution: Perform fixed attribution on whole dataset using average center and eta values from solar max (42 pairs)
- Results:
 - Segmentations in monthly subset were satisfactory
 - 1997-2011 segmentation criteria are fixed, not image-dependent
 - AR/QS/CH timelines (9 540 points): median I, total I, filling factor

EIT AR movie 1997-2011

EIT CH movie 1997-2011

Median intensity EIT 1997-2011

Slight variation of median intensity AR/QS in sync with solar cycle
 QS variation is probably due to overlying AR canopies

Median intensity varies substantially more for AR than for QS & CH

Total intensity EIT 1997-2011

- Total intensity AR in sync with solar cycle, incl. double max 2000 & 2002
- Total intensity QS slightly in sync with solar cycle
- Total intensity CH in anti-phase with solar cycle

Filling factor EIT 1997-2011

- Filling factor (FF) = relative area AR/QS/CH on solar disk
- FF AR in sync with solar cycle, incl. faint double max 2000 & 2002
- FF QS & CH in anti-phase with solar cycle
- Zooming in on FF clearly reveals the 27-day period of solar rotation

5. SPoCA AR/CH results EUVI A & B

Dataset:

- 1k x 1k EUVI images (195 Å)
- Time range: Jan 11 March 31, 2011
- Cadence: 1 hour

SPoCA AR/QS/CH segmentation:

- Input: square root; 4 classes: CH = {1}, QS={2,3}, AR = {4}
- Initial SPoCA run, followed by final SPoCA attribution run using the median of all center and eta values
- STEREO A & B about 180 degrees apart -> 13.5 day lag expected
- Results:
 - Segmentations were satisfactory
 - Expected 13.5 day lag STEREO A-B in AR/CH time series confirmed

AR detection on EUVI

CH detection on EUVI

AR & CH filling factors on EUVI-A & B

- STEREO-B results have been shifted 13.5 days ahead in time
- Filling factors of AR/CH show the expected 13.5 day lag between STEREO-A and B
- One full solar rotation later, we find similar AR/CH filling factors (for both spacecraft)

6. SPoCAAR results SWAP

Dataset:

- 1k x 1k SWAP images (174 Å)
- Time range: October 2010-June 2011
- Cadence: 6 hours

SPoCA AR segmentation:

- Input: linear; 6 classes: CH = {1}, QS = {2,3,4}, AR = {5,6}
- Caution:
 - SPoCA parameters selected by limited ad hoc visual inspection
 - The ARs are a bit smaller than in the EIT 1997-2011 analysis
 - No quality control yet: artifacts due to bad files etc. not removed
 - Mo CH retained

AR detection on SWAP

Total intensity & FF SWAP 2010-2011

Visually obvious correlation of AR area & especially AR total I with International Sunspot Number & F10.7

7. SPoCA CH results AIA

Dataset:

- 4k x 4k AIA images (193 Å)
- Time range: January-April 2011
- Cadence: 1 hour

SPoCA AR/QS/CH segmentation:

- Input: square root; 4 classes: CH = {1}, QS={2,3}, AR = {4}
- Initial HFCM run
- **Problem:** AR centers sometimes show sudden jumps
- Solution: Perform HFCM attribution using median of last 10 centers
- Results:
 - Segmentations were satisfactory
 - Periods found: solar rotation of ~27 days, period of ~9 days

AR detection on AIA

CH detection on AIA

HFCM DivExpTime,ALC,ThrMax80,TakeSqrt cleaning: 6 arcsec aggregation: 32 arcsec projection: sinusoidal min size: 3000 arcsec²

AIA 193Å 2010-05-17T15:00:02.08

CH filling factors on AIA

- Periods found in CH filling factors:
 - Solar rotation of ~27 days
 - Ø period of ~9 days
- Period of ~9 days was previously found by Temmer et al. (2007) based on GOES-SXI images

8. Applications

- FP7 SOLID project: SPoCA AR/QS/CH filling factors are being included into semi-empirical models of the solar atmosphere, which will be used to model solar EUV irradiance (Haberreiter 2011)
- Construction of AR butterfly diagrams
- Since Sep 2010, SPoCA provides near real time AIA AR & CH results to the HEK (Heliophysics Events Knowledgebase) – also visible in JHelioviewer
- Space weather applications such as near real time localization and extent of CH for estimation of start time and velocity of CH high speed solar wind streams

SPoCAAR & CH in JHelioviewer

AIA 171 Å image Feb 12, 2012 @ 9:15:56 UT together with AR & CH location and chain code info recorded in the HEK. An Event Information window pops up when clicking on an event or feature.

NOT SURE IF THANKS FOR YOUR ATTENTION

OR THANKS FOR BEING SLEEPING THE WHOLE PRESENTATION